NAVIER-STOKES COMPUTATIONAL STUDY OF AXISYMMETRIC 172
TRANSONIC TURBULENT FLO. . (U) RRHV BRLLISTIC RESERRCH

LAB ABERDEEN PROYING ROUND J SAHU

UNCLASSIFIED BRL-TR-2643 SBI-AD-F308 5 F/G 20/4

-A152 653

A
o 3 N
: —u




[Rgys
= g =
L s B
— e
[l e yee



r vl
o
O |

AD-A152 653

AD

R TECHNICAL REPORT BRL-TR-2643

NAVIER-STOKES COMPUTATIONAL STUDY OF _
AXISYMMETRIC TRANSONIC TURBULENT '
FLOWS WITH A TWO-EQUATION MODEL

OF TURBULENCE

DTIC

gy L ECTE e
= _, ;
@, APR161985 "

Jubaraj Sahu

'y
B8
-.r
~.
£y

February 1985

a
8
-L_l; B
== !
g APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
’.
US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND 3_:'
91 8 ) 1




-

. T I AT TR T S P I P S
DL P TR AR P N PR W W i YA

Ly Ty — e— R — T -~

Destroy this report when it is no longer needed.
Do not return it to the originator,

Additional copies of this report may be obtained
from the National Technical Information Service,

U. S. Department of Commerce, Springfield, Virginia
22161,

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.

o
b

TN v s w — s




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF O O O M
1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT’S CATALOG NUMBER
TECHNICAL REPORT BRL-TR-2643 i ¢
4. TITLE (and Subtitle) . 5. TYPE OF REPORT & PERIOD COVERED

NAVIER-STOKES COMPUTATIONAL STUDY OF
AXISYMMETRIC TRANSONIC TURBULENT FLOWS WITH A §: PERFORMING ORG. REPORT NUMBER
E

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Jubaraj Sahu

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PA:giR&AwOERLKE’L‘lSINTT'NPURNOBJEERCJ' TASK
U.S. Army Ballistic Research Laboratory

ATTN: AMXBR-LFD RDT&E 1L161102AH43
Aberdeen Proving Ground, Mapyland 21005-5066

v.s ONIT\;;\‘qugfﬁ lsctsi'::mlfe;’éoa:‘z%n?;boratory e RemonT 0ATE

ATTN:  AMXBR-OD-ST Pavaa e T

Aberdeen Proving Ground, MD 21005-5066 102

T4, MONITORING AGENCY NAmE a ADDKESS{/! different from Controlling Office) | 15. SECURITY CLASS. (of thie report)

[15a. DECL A'sgnilwolu;%gncmomc ‘

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i! different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Thin-Layer Navier-Stokes Computations
Transonic Flows Axisymmetric
k-€ Implicit Algorithm

- Generalized Coordinates Shock-Induced Separation

20. ABSTRACT (Tontinue an reverse sfde if neceesery sxd Identily by block number)

,) A thin-layer Navier-Stokes code has been used to compute the turbulent flow
over two axisymmetric bodies at transonic speeds and the results are compared to
experiment. A critical element of calculating such flows is the turbulence T
» model. Numerical\computations have been made with an algebraic eddy viscosity -
model and the 'k-¢’two-equation model. The k-g equations are developed in a -
general spatial coordinate system and incorporated into the thin-~layer, compress- R
ible, time dependent Navier-Stokes code. The same implicit algorithm that —__}; » e

FORM
DD | jan 73 1473  €01TiON OF 1 NOV 6313 OBSOLETE

J o ‘ secont¥eAaTH i EE b wor s race (When Data Entered) -

L
.
2
PR 'Y




ISRl i g

T T ——— T S A aecue a T (RS A e aen s s o

UNCLASSIFIED

< SECURITY CLASSIFICATION OF THIS PAGE(When Data Bntered)

N]

20. ABSTRACT (Continued) k- tys [,
‘simultaneously solves the Reynolds-averaged mean flow equations is extended to
solve the turbulence field equations using block tridiagonal matrix inversions.
Calculations with the k-5 model are extended up to the wall and exact values of
k and (€] at the wall are used as boundary conditions.
E 'PSV‘ o~

The k-¢ model has been applied to two transonic flows: (i) attached flow
over an axisymmetric projectile; and (ii) separated flow over an axisymmetric
bump configuration. The accuracy and applicability of the k-¢ model are deter-
mined by comparing the computed results with experimental data. For the attached
flow over the projectile, the computed results are in good agreement with the
experimental data. The comparison of predicted and experimentally obtained mean
velocity, turbulent shear stress and turbulent kinetic energy for transonic
separated flow over the axisymmetric bump model shows generally good agreement
except in the separation region. The results indicate that the k- model
performs better than the algebraic model in the recovering region downstream of
the separation. The k-¢ model has the potential to provide accurate predictions
for separated flows. Applications of narticular interest are: (i) the flow in
the vicinity of a projectile rotating vand; and (ii) the flow in the base region
of a projectile.

DTIC

A" LECTE

b

. APR16185 :

W

B

4

i Y. 3 E
L P D
a )
A Gden {
v atteny
s ikl ULy Toles !
) Al A/ np . -f
st D o Al '
]

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




IT.

II.

IvV.

VI.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS. .cvueevvueavecroossosonssscossssssesssosssnce
INTRODUCTION. ceaveorecasseessseataascesosasssossasssasasesaancnnncse
TURBULENCE MODELS.evueeeeococcasasoncasnscscsnsccsaasscssssncsoassne
A. Turbulent Eddy Viscosity ModelS.ceecescecencscasesacsascnccacnes

1. Zero-Equation (Algebraic) ModelS...eececeeocsesoscassasacss
2. One-Equation ModelS....ceececrscsccccacccsansasosssscsnscse
3. Two-Equation Mode]s.......I...'....'....'.’.......l........

B. Reynolds Stress ModelS.cceeeeecoccoeseoorsssssnssesssssnscscnnss
C. Baldwin~Lomax Algebraic Model.cesererscscscsscsescscssesancncns
D' k-e (Two-Equation) Mode]Q...'.0...‘.....'0...........'..'..'.I.

NAVIER—STOKES COMPUTATIONAL TECHNIQUE................'..'........‘.

Al Governing Equations..l‘.l....'...l..‘.................l........
B. Numerica] Method.........I...Q...‘..'.'.........'..l..'.l......
C. Initial and Boundary ConditiOnSeseeeceecessescesscosaosenscnses

SOLUTION OF k-e EQUATIONS'.0........'0....'O..".......'.t.‘.'.....

L] Turbu]ence Fie]d Equations'.0.0'..0.".....QQ.........'..O'.O..
. Transformation into Generalized CoordinateS.eeeeececcoccoconcss
. Numerica] Method.....O'.OC........‘0...'.......QIQ.QI..‘.I....C

. SO]UtiOﬂ A]gorithm-...oloooooon-‘on.ooucaoo.ono-.o.ooo--ooooo-.

A
B
C
D. Approximate Factorization..seeescecscescnsesesceocecacoscscancne
E
F. Initial and Boundary ConditionS..eeeeeceacescsccsccossesscncons
G

. Coupling with Mean Flow EQUAtioNS.ceeceetecscscsscccsseosocncsns
RESULTst.'.0....0...‘.'........O.l..‘ll."......‘.'ll......'..00...

A. Attached Flow Over an Axisymmetric Projectile...ceceecececeacss
B. Separated Flow Over an Axisymmetric Bump.seescececcececesssases

CONCLUDING REMARKS.....'.-...-.Oootl...oo'o.o.on...to.uooo'oooooooo

Ao ObjectiveSQ.oo-oooooooo.o--o-oo.oc.t..oo.....oooc--o.ootc--o-.o

Bc Summary Of Resu]ts..oco-ooloocOooo-ooo-0......ooo.onoo-o'oooooo
Cn Recommendations.oocoaooooonlocl!-co.ooooo-oo'oo.o.ooooo-o.oo-‘n

3




TABLE OF CONTENTS (Cont'd)
REFERENCES. . .vveveennanns et teeesareeatestatatteentisaneiranns cees 92 ]
BI3LIOGRAPHY « « v e e eeneensenneneeneenesnsennesnsennesnennesnnensee 97 o

LIST OF SYMBOLS. + s nnnnsnsesennnseeeeesssneessssessssssesssssnns 99 S

DISTRIBUTION LIST..0.....0......0l.ll.'l"..'..0.............".." 101 ..‘:,j

2SI

T




LIST OF ILLUSTRATIONS

Figure Page
1 Axisymmetric Body and the Coordinate System.......ce.eceveeeeeees. 56
2 Balance of Terms in the k-equation (Reference 41)..........c0000.. 56
3 Model GeOMELrY.eeeceeececcosesesssssoascososccasssosssssesccssecsecse DI
4 Computational Grid.cecsceeeooeecssascssecscesssssscscscsscssssacas 97

5 Expanded View of the Grid Near the Model....coceveeeceeneenennseees 58
6 Turbulent Kinetic Energy Profiles, M, = .94, a=0......c00unenen. 58

7 Turbulent Dissipation Rate Profiles, M_ = .94, a = 0..0c000veneness 59

"
.
o
-
-
2
"

8 Turbulent Viscosity Profiles, M_ 0 (Algebraic Model)... 59

"
L
o
o
-
[+
1}

9 Tu bulent Viscosity Profiles, M 0 (k-€ Model)...ceve.. 60

.94, a =0, X/D

3.42.00.0.0.0.0-00.....- 60

10a Velocity Profiles, M

L

i

94, a =0, X/D =5.05..0c00ievuncvenncacs 61

]

10b Velocity Profiles, M,

10C Ve]OC1ty PPOfi]eS, Mw .94, a = 0, X/D 5.36..0---..-...-.-----. 61

10d Velocity Profiles, M_ = .94, a =0, X/D = 5.61l..c00ciriincecancasss 62

1}

6.1900...0.....0...-.... 62

10e Velocity Profiles, M = .94, a = 0, X/D

11 Surface Pressure Distribution, M_ = .94, @ = Quecveeveccnanneanses 63

12 Turbulent Kinetic Energy Profiles, M_ = .97, a = 0..vevevenveneees 63

.97’ a=0.Il.C.'....... 64

13 Turbulent Dissipation Rate Profiles, M

14 Turbulent Viscosity Profiles, M_= .97, a =0 (Algebraic Model)... 64
15 Turbulent Viscosity Profiles, M_= .97, « = 0 (k-e Model)......... 65
16a  Turbulent Viscosity Profiles, M_ = .97, a =0, X/D = 3.42......... 65
16b  Turbulent Viscosity Profiles, M_ = .97, « = 0, X/D = 5.05.cccc00.s 66
16c  Turbulent Viscosity Profiles, M_= .97, a = 0, X/ - 5.36iccceeees 66

» X/D = 5.61l......... 67

0
16e  Turbulent Viscosity Profiles, M_= .97, a = 0, X/D
4

16d Turbulent Viscosity Profiles, M_= .97, a =

]

6-19.....0..0 67
17a  Velocity Profiles, M_ = .97, a=0, XD

3. 2..00'000.0'0.......- 68

[
B A N
- -' 4"'. -« s .
TR A




Figure Page
17b  Velocity Profiles, M_ = .97, a = 0, X/D = 5.05..c000vivuncccnnnses 68
17¢c  Velocity Profiles, M_ = .97, a = 0, X/D = 5.36.0cccccntccciancccss 69
17d  Velocity Profiles, M_ = .97, a =0, X/D = 5.61l.cccciuiucecinnncecss 69 .
17e  Velocity Profiles, M_ = .97, a =0, X/D = 6.19..c.00cvvvnnnennaees 70
18 Surface Pressure Distribution, M_ = .97, @ = Ouecvvvvricrnnnnnnnse 70
19 Schematic ITlustration of the Bump Model.eeeeeceeneenossesanesanes 71
20 Full Computational Gridicesesesecessascocosscosscascsssccsescscsee /1
21 Expanded Grid Near the Bump.......eoessesososeccosncessssscsscsees 12
22 Mach Contours, M_ = .875, a = Ou.iveeereennvecroorccscsnsssaccsenes 12
23 Pressure Contours, M_ = .875, a = Quieceeenencccncnnrccennsccenaes 73
24 Velocity Vectors, M_ = .875, a = Queecereeocrcscenrcrinnescnnneces 73
25 Stream Function Contours, M_ = .875, a = 0 (Algebraic Model)...... 74
26 Stream Function Contours, M_ = .875, a = 0 (k-¢ Model)........v... 74
27 Surface Pressure Distribution, M_ = .875, a = O.civvennnniiceaneas 75
28a Mean Velocity Profiles, M. = 875, a =0, X/€C = «75¢iieeesccecanes 15
28b  Mean Velocity Profiles, M_ = .875, a =0, x/c = 875..0uvucveeccss 76
28c  Mean Velocity Profiles, M_= .875, a =0, x/c = .938.....00000tnee 76
28d  Mean Velocity Profiles, M_= .875, a =0, x/c = L.0vesieiennnencses 77
28 Mean Velocity Profiles, M_ = .875, a = 0, X/C = 1.062.cueressnss. 77
28f  Mean Velocity Profiles, M_ = .875, a = 0, x/c = 1.125..000evenesee 78
28g  Mean Velocity Profiles, M_= .875, a =0, x/c = 1.25.....0000eene 78
28h  Mean Velocity Profiles, M_= .875, a = 0, x/c = 1.375.....00vvuues 79
29a Turbulent Shear Stress Profiles, M_ = .875, a = 0, x/c = .563..... 79
29b  Turbulent Shear Stress Profiles, M_= .875, a = 0, x/c = .625..... &80
29¢  Turbulent Shear Stress Profiles, Mm = 875, a=0, x/c = .75...... 80
6
©
...................................... T

LIST OF ILLUSTRATIONS (Cont'd)




LIST OF ILLUSTRATIONS (Cont'd)

Figure Page
29d  Turbulent Shear Stress Profiles, = 875, a =0, x/c = .875..... 81

29e Turbulent Shear Stress Profiles, = .875, a= 0, x/c = .938..... 81

0
29f  Turbulent Shear Stress Profiles, = .875, a =0, x/c = 1.0...... 82
0, x/c = 1.062.... 82
0

29h  Turbulent Shear Stress Profiles, = .875, a =0, x/c = 1,125.... 83

29i Turbulent Shear Stress Profiles,

M ©
Meo
Mm

299  Turbulent Shear Stress Profiles, M_ = .875, a =
Mm
M, = .875, a =0, x/c = 1.25..... 83
Mm

29j Turbulent Shear Stress Profiles, = .875, a =0, x/c = 1.375.... 84

.875, a =0, x/c = .563... 84

30a Turbulent Kinetic Energy Profiles, M

30b Turbulent Kinetic Energy Profiles, M .875, a =0, x/c = .625... 85

=
]

30c  Turbulent Kinetic Energy Profiles, .875, a =0, x/c = .75.... 85
30d Turbulent Kinetic Energy Profiles, M_ = .875, a = 0, x/c = .875... 86
30e Turbulent Kinetic Energy Profiles, M_= .875, a = 0, x/c = .938... 86
30f Turbulent Kinetic Energy Profiles, = .875, a =0, x/c = 1.0.... 87

30g Turbulent Kinetic Energy Profiles, = ,875, a = 0, x/c = 1.062.. 87

30h  Turbulent Kinetic Energy Profiles, = ,875, a =0, x/c = 1,125.. 88

30i  Turbulent Kinetic Energy Profiles, = ,875, a = 0, x/c = 1.25... 88

.875, o = 0, x/c = 1.375.. 89

30j Turbulent Kinetic Energy Profiles, M

0...... 89

31 Location of Maximum Turbulent Shear Stress, M_= .875, a

32 Variation of Maximum Turbulent Shear Stress, M_ = .875, a = 0..... 90
33 Location of Maximum Turbulent Kinetic Energy, M_ = .875, a = 0.... 90

34 Variation of Maximum Turbulent Kinetic Energy, M_ = .875, a = 0... 91




I. INTRODUCTION

For more than fifty years it has been recognized that our understanding
of turbulent flows is very incomplete. A quotation attributed to Sir Horace
Lamb in 1932 might still be appropriate.

I am an old man now, and when I die and go to Heaven there
are two matters on which 1 hope for enlightenment. One is
quantum electrodynamics and the other 1is the turbulent
motion of fluids. And about the former I am rather
optimistic.

According to Hinze,!

Turbulent fluid motion is an irregular condition of flow in
which the various quantities show a random variation with
time and space coordinates so that statistically distinct
average values can be discerned.

We are all familiar with some of the differences between laminar and
turbulent flows. Usually, higher values of friction drag and pressure drop
are associated with turbulent flows. The diffusion rate of a scalar quantity
is usually greater in a turbulent flow than in a laminar flow (increased "mix-
ing") and turbulent flows are usually noisier. A turbulent boundary layer can
usually negotiate a more extensive region of unfavorable pressure gradient
prior to separation than can a laminar boundary layer.

The subject of turbulence has absorbed the energies of countless research
workers over a period of more than two decades. It still continues to be an
area of research where lack of complete understanding prevails. A listing of
excellent references on the subject of turbulence is given in the Bibliography
at the end of this report. Turbulent motion is a time-dependent phenomenon
and thus, the unsteady Navier-Stokes equations are considered to govern the
time history of a fluid particle in a turbulent flow. Numerical procedures
are available for solving such equations; however, it is almost impossible to
completely analyze a turbulent flow in this way. The main problem is that the
time and space scales of the turbulent motion are extremely small. A grid
fine enough to resolve the small scale motions of turbulence would therefore
require an immense and impracticable number of points. The number of grid
points required and the small size of the time steps puts the practical compu-
tation of turbulent flows by this means outside the realm of possibility for

1. J. 0. Hinae, Turbulence, 2nd Edition, McGraw-Hill, New York, 1975.
9
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present computers. Some researchers are optimistic that by the turn of the
century computer technology will have advanced to where turbulent flow calcu-
lations can be made from first principles.

The main thrust of present day research in computational fluid mechanics
and heat transfer in turbulent flows 1is through the time averaged Navier-
Stokes equations which historically have been referred to as the Reynolds
equations of motion in many circles. Time averaging the equations of motion
gives rise to new terms which can be interpreted as new "apparent" stress
gradients and heat flux quantities associated with the turbulent motion.
These new quantities must be related to the mean flow variables through turbu-
lence models whicn introduce further assumptions and approximations. Thus,
this attack on the turbulent flow problem through solving the Reynolds equa-
tions of motion does not follow entirely from first principles since addition-
al assumptions must be made to “close" the system of equations. This closure
is achieved via turbulence models. A turbulence model consists of a set of
differential equations and/or algebraic equations and associated constants,
the solutions of which, in conjunction with the equations of mean motion,
closely simulate the averaged character of real turbulent flows.

Various turbulence models have been proposed. Zero-equation models are
useful in engineering applications but their applicability is limited to near
equilibrium flows.2 One-equation models increase the computational work and
do not bring improvement in universality and predictive capability that would
justify their use. Two-equation models are more universal and less empirical.
Higher order Reynolds stress models are sophisticated and have gained Tless
popularity than two-equation models. In the present study numerical computa-
tions are made using Chien's3 k-¢ two-equation turbulence model which is
similar to that of Jones and Launder.* © Calculations are extended up to the
wall and the exact values of the dependent variables at the wall are used as
boundary conditions.

2. A. J. Wadeock, "Simple Turbulence Models and Their Applications to
Roundary Layer Separation,” NASA CR-3283, May 1980.

3. Juei-Yuan Chien, "Predictions of Chamnel and Boundary-Layer Flows with a
[ ow-Reymolds-Number Turbulence Model,'" AIAA Jourmal, Vol. 20, January
'382, pp. 33-38. -

4. W. P. Jones and B. E. Launder, '"The Prediction of Laminarization with a
Two-Fquation Model of Turbulence," Int. Jourmal of Heat and Mass Trans-
Ffer, Vol. 15, 1972.

5. W. P. Jones and B. E. Launder, "The Calculation of Law-Reynolde-Number
Phenomena with a Two-Equation Model of Turbulence," Int. Jourmal of Heat
and Mass Transfer, Vol. 16, 1973.

6. R. F. Launder, C. H. Pridden, and B. I. Sharma, "The Calculation of
Turbulent Boundary Layers on Spinming and Curved Surfaces," Jourmal of
Fluide Engineering, March 1977, pp. 231-239.
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Most of the well-known turbulence models lead to parabolic systems of
partial differential equations when coupled with the conservation equations.
A Tlarge variety of numerical methods for solving parabolic partial differen-
tial equations have been used to calculate boundary-layer flows with various
levels of success. The Hartree-Womersley method’ for solving parabolic
equations has been employed to solve the equations for laminar and turbulent
boundary layer flows. The method treats derivatives in the transverse direc-
tion as ordinary derivatives and expresses the streamwise derivative as a
finite-difference. This reduces the system of partial differential equations
to a sequence of ordinary differential equations to be solved in succession as
the integration proceeds downstream from one station to the next. The two-
point boundary-value problem for the ordinary differential equations can be
solved by the shooting method. The inconvenience associated with handling the
two-point boundary conditions has contributed to an apparent movement away
from this method to more conventional finite-difference procedures.

Finite-difference schemes, ranging from simple conventional ones to more
sophisticated variants, have been used extensively. Pletcher® wused the
DuFor:-Frankel explicit scheme to calculate incompressible and compressible
turbulent boundary layers. The stability constraint associated with the
expiicit scheme does restrict the allowed step size for numerical integration.
Implicit schemes do not have that constraint. Diagonal dominance however,
plays an important part in these schemes.? Examples of the implicit methods
can be found in the work of Patankar and Spalding, !0 Harris!l and Blottnerl?

mong others. Implicit schemes of Crank-Nicolson's type have been applied to

7. D. R. Hartree and J. R. Womersley, "A Method for the Numerical or Mechan-
tea’l Solution of Certain Types of Partial Differential Equations,'" Proc.
Roral Soe. London, A161, p. 313, 1937.

8. R. H. Pletcher, "On a Finite-Difference Solution for the Constant
Property Turbulent Boundary Layer," AIAA Journal, Vol. 7, February 1969,
pp. 305-811.

a. R. S. Hirgh and D. H. Rudy, "The Role of Diagomal Dominance and Cell
Reynolds Number in Implicit Methode for Fluid Mechanics Problems, "
Jourmal of Computational Physics, 16, 1974, pp. 304-310.

10. S. V. Patankar and D. B. Spalding, Heat and Mass Transfer in Bounda»y
Layers, Intertext Books, London, 1970.

11. J. E. Harrig, "Numerical Solution of the Equations for Compressible
Laminar, Traneitional, and Turbulent Boundary Layers and Comparisons with
Laperimental Data," NASA TR-R 368, 1971.

12. F. G. Blottner, "Finite Difference Methods of Solutiom of the Boundary
Layer Equations,'" AIAA Journal, Vol. 8, 1970, pp. 193-205.
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In Equation (18) the symbol € is used instead of e since this notation pre-
vails in the literature. The Jones-Launder model has been proved to be a
powerful tool for the calculation of boundary layers, free shear layers, and
some recirculating flows. Recently, new forms of the model have been proposed
in order to improve flow predictions.3°42°43 The model proposed by Chien3 is
more well behaved mathematically near a solid wall and is utilized in this
study.

Chien proposed a few changes which included replacing the term

1/2
. ok
2y (%2

in the k Equation (17) by

172 T
a:y )2 and -. av
-KE are important only very close to the wall and become very small away from
y
the wall. Thus the solution away from the wall is not adversely affected by
the inclusion of this correction term. The term in Jones-Launder model

172

3K

Q‘gy““)z is nonlinear and suffers from grid resolution and stability problems.

This term has the advantage of being Tinear in k. Both the terms (

Another of Chien's proposals was to make € of the order 0(y?) at the
wall. In order to maintain consistency at the wall, a new term is added to
the ¢ equation which is given by

- 2v = exp (- %~y+).
y2

42. H. G. Hoffman, "Improved Form of ‘he Low Reynolds Number k-e Turbulence L:,ﬂ
Model, " Phys. Fluide, Vol. 18, Ma-ch 1975, pp. 309-312. '

43. C. H. . Lam and K. Bremhorst, "4 Modified Form of the k-e Model for
Predicting Wall Turbulence, " Jour-al of Fluids Engineering, Vol. 103, .
September 1981, pp. 456-460. :

25
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her than €.%’5 This is considered advantageous from the computational

int of view since ¢ has a finite value at the wall but e goes to zero at the ,
11. To prove this, let us expand the fluctuating velocities close to the - d

11 in Taylor series. L
Ut = (B, (E)yR e SR
Vv (t)y F vy (t)y? . (20) T
Woo= W (t)y + wz(t)y2 e
]
bstituting these into the definitions of k and ¢,
k = %(u‘2 + v'2 + w2) A
1.5 5 e
=5 [(uf + vf + wf)y2 + 2(u1u2 + VY, + wlwz)y3 + el (21)
[
k = 0(y?)
1d i
a—; o —5—7
e = g2+ (F)2 + (52 ] |
] 4
S — — [ ] 4
= v[(u% + v2 o4 wZ) «+ 4(Uid£ VY, ¥ wlwz)y + ] (22)
e = 0(1) . B
k2, T2+ V2 o+ w2 o
2 (59~ (uf + v+ W) o
'~_;g1
nd 0
R
NN
24 ’ - '
]
[ )
SR
R
o

r
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follows: (i) adding terms accounting for the viscous diffusion of k and ¢€;
(ii) replacing constants c¢;, c» and Cu with functions of the turbulence
Reynolds number Ry where

_ k2
Ry = 3¢

.
3

(iii) adding two new terms in Equations (14), and (15); hence, the proposed
equations are:

- _“k2.
up = C fog (16)
- 1/2
Dk _ M1y 3k 3, 2 3k %15
"'D—t‘W[(“J'E;)'ay]’L“T Goy)® - pe - 2u (y) ()

De 3 T, 3¢ € Ju €? 3%y
- = - 4+ =Y 2= + f, = gUuy2 _ f L 2 9 Uy2 18
S R TASUR S ayd * 11 ke ()% - cafap gt 2uig (ayz) (18)
where
f1 = 1.0,
fa=1-0.3exp (-R%),
- “
fu = exp [-2.5/(1 + 0.02 Ry) 1. B
;
Inclusion of the last terms in Equations (17) and (18) makes equation (18) an 1
equation for the quantity
172 SIS
~ ak 2 e
€=¢ - 2v { 3y ) (19) s
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determined by the shear stress at the wall T, the kinematic viscosity v, the

fluid density p and the distance y from the wall is invoked. One can then
compute the flow properties at a point beyond the viscosity-affected zone and
locate there the grid point nearest to the wall. In this approach the bound-
ary conditions are not applied at the wall but near the wall and it is refer-
red to as the wall-function method. As a result the computer time required
for the solution of the governing equations is considerably reduced, since the
necessity to resolve the steep gradients of the dependent variable in the

viscous sublayer is removed. In practice the Tlocation yt of the first grid-
point is taken in the region

40 < y* < 100

and the values of the dependent variables are calculated from (see
Bibliography)

k= L= 3,33,

/C
u
+_ 1 _ 2.44

& T 7%

Ky y
where
ut = g y+ =1, kb= E—-, et =Y andu_ =1 /e
V] \Y 2 T W
T uz u

Although many flows obey these near-wall "laws" with sufficient accuracy,
deviations are observed in flows characterized by separation, strong accelera-
tion, steep temperature gradients, etc. Computation of these flows cannot be
based on near-wall region "universal laws." Therefore, turbulence models
incorporating the important influence of viscosity very close to the wall
should be utilized so that calculations can be extended up to the wall itself
and the exact values of the dependent variables at the wall can be used as
bounddary conditions.

Jones and Launder extended the k-t model to include the influence of vis-
cosity very close to the wall by modifying Equations (9), (14), and (15) as

22
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D. k-e (Two-Equation) Model

The k-e model used in the present study is based upon the one developed
by Jones and Launder“’> where k is the turbulent kinetic energy and e is the
turbulent dissipation rate. Using the Cartesian-tensor notations, k and e are
defined in terms of the velocity fluctuations and their gradients as

_ 1l =
k=g Uiy
and (13)
3h; 3u
€ =V —
axk axk
The turbulent eddy viscosity Wy is,
k 2
UT'Cup‘E

The variables k and € are determined from the solution of the following
transport equations:

Dk _ 3 MT o Uy

POt "3y (5 ay) vt ()t - e (14)
De _ 3 ,MT 2e € Uy g2

"ot ay oy tart iyt ere (15)

where c), cp, o , o are empirical constants having the values: ¢; = 1.55, ¢p
= 2.0, 9 = 1.0, g = 1.3. Equation (14) is an approximation to the exact

transport equation for k which is derived from the incompressible Navier-
Stokes equations. The ¢ Equation (15) is formulated in analogy to the k equa-
tion since it can not be derived.

Direct effects of the molecular viscosity on turbulence structure are
neglected in most turbulence models. Viscous effects are indeed negligible
throughout most of the flow, but become important in the immediate vicinity of
a wall. An approach not used in this study is to avoid the complications of
the viscosity-dependent region adjacent to a wall. The assumption that the
mean velocity and the statistical correlations in this region are completely

21




The eddy viscosity for the outer region is given by

KC »F F

() guter = cp P "wake (12)

klep(Y)

where Fuake = Ymax Fmax ©7 Cwk Ymax “gif/Fmax’ the smaller of the two values.
The quantities y,,, and Fp .. are determined from the function F(y) =y [w]
[1 - exp(- y+/A+)] where F. .. is the maximum value of F(y) and ypax s the

value of y at which it occurs. The function Fiqop(y) is the Klebanoff
intermittency factor given by

C y _
kleb )6 ] 1.

Fkleb(y) = [1~-5.5( y

max

The quantity ugij¢ 1is the difference between the maximum and minimum total
velocity in the profile,

1/2
max

1/2

= 2 2 2 2 2 2
(u2 + v2 + w?) (u +V+w)min

Ugif

and for boundary layers, the minimum is defined as zero.

The outer formulation can be used in wakes as well as in attached and
separated boundary tayers. For free-shear flow regions or wakes, the Van
Driest damping term [exp(- y*/A*)] is neglected. It is necessary to specify
the following constants; A* = 26, Cep = 1.6, Cyrep = 0.3, Cyy = 0.25, « = 0.4

and K = 0.0168. This type of simple model is generally inadequate for complex
flows.*0°%l  One model that has been used successfully to predict many flows
is the two-equation k-e model.

40. J. J. Gorski, T. R. Govindan, and B. Lakshminarayana, 'Computation of
Three-Dimeneional Turbulent Shear Flows in Cormers,'” AIAA Paper No. 83-
1733, July 1983.

41. P. Van Gulick, "Application of the k-€ Turbulence Model to a Turbulent
Boundary Layer Solution for Flas about a Spinning Yawed Progjectile at
Mach 3," Master's Thesie, University of Delaware, June 1983.
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The strength of a model lies in a combination of accuracy and general-
ity. One should not expect two-equation models to predict flows any more
accurately than simpler models; but simpler models need more extensive adjust- T
ments for each different flow condition. Reynolds stress formulations are - =
still under development. An excellent review of the status of turbulence
modeling for computational aerodynamics has been made by Marvin39 and the
performance of various models are discussed. The two-equation models appear S
to perform better for separated flows especially in the recovering regions ﬁi}f
downstream. Based on the above considerations, a two-equation (k-€) model was R
formulated and utilized in the present study. Additionally, Baldwin-Lomax <t
algebraic model?* was used to perform the same computations for comparison '
purposes. Both of these models are described below.

C. Baldwin-Lomax Algebraic Model

The algebraic eddy viscosity model used in this study is that developed -
by Baldwin and Lomax.2* It is a two-layer model in which an eddy viscosity is
calculated for an inner and an outer region.

ur = (1) ipner Y £ Yerossover

Br = ("T)outer Y > Ycrossover

where y is the normal distance from the wall and y.possover 1S the smallest

value of y at which values from the inner and outer formulas are equal. The
inner region is based on the Prandtli-Van Driest formulation

(ur)inner = #%%10] (11)

where

+ +
2=yl - exp(- y'/ANT, yh = T
and |w| is the magnitude of vorticity given by

= [(2Y _ 3vy2, (3V _ dwyp . (BW _ 3uypql/2
lwl [(ay - 3)() + (32 ay) + (3X BZ) ] . - )

39. J. G. Marvin, "Turbulence Moceling for Computational Aerodynamics," AIAA - 4
Paper No. 82-0164, January 1982. -
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where Cu is taken equal to 0.09. Some of the currently available two-equation

models are the Jones-Launder,* Ng-Spalding,!0 Saffman-Wilcox,32 Wilcox-
Traci33 and Wilcox-Rubesin3* models. The Jones-Launder (k-e) and Wilcox-
Rubesin (k - w2) models are the most popular of these models. Several
researchers have made computations using these turbulence models and compared
the calculated results with experimental data. However, the comparisons have
not revealed any of the models as definitely superior over the others.

B. Reynolds Stress Models

These are models which do not assume that the turbuient shearing stress
is proportional to the rate of mean strain i.e.,

-qu‘TiuT—_" (10)

Transport equations are developed for all the components of the Reynolds
stress tensor. Such modeling requires the solution of three or more partial
differential equations. The Reynolds stress model proposed by Daly and
Harlow35 is a good example which requires the simultaneous solution of five
transport equations. To date these models have been used largely as turbu-
lence research tools.3% Recently, these models were applied to compute the
incompggssib]e flow in a duct37 and to simulate the near-wake flow of a flat
plate.

32. P. G. Saffman and D. C. Wilcox, "Turbulence Model Predictions for Turbu-
lent Boundary Layers," AIAA Journal, Vol. 12, No. 4, 1974.

33. D. C. Wilcox and R. M. Traci, "4 Complete Model of Turbulence," AIAA
Paper No. 76-351, 1976.

34. D. C. Wilcox and M. W. Rubesin, "Progress im Turbulence Modeling for
Complex Flaw Fields Including Effects of Compreesibility, " NASA TP-1517,
1980.

35. B. J. Daly and F. H. Harlow, '"Transport Equatione in Turbulence," Physice
of Fluide, No. 13, p. 2634, 1970.

86. B. E. Launder, G. J. Reece, and W. Rodi, "Progress in the Development of
Reynolds Strees Cloeure, " J. Fluid Mechanics, Vol. 68, 1975.

37. V. Reittman, M. Israeli, o d M. Wolfshtein, "Numerical Solution of the
Reynolds Strese Fquatioms in a Developing Duct Flow," AIAA Paper No. 83-
1883, July 1983.

38. A Sugavanam, '"Near-Wake Computatione with Reynolde Stress Models," AIAA
Paper No. 83-1696, July 1983.
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172
LIT = pk L, (7)
and up no longer becomes zero when %% = 0. Other one-equation models have

been suggested, the most notable one being the one used by Bradshaw, et al.3!
The turbulence energy equation is used but the form of modeling of the turbu-
. lent transport terms deviate somewhat from the one described above.

3. Two-Equation Models: In one-equation models, the length scale is
evaluated by an algebraic expression dependent upon only the local flow param-
eters. Researchers in turbulent flow have long felt that the length scale in
turbulence models should also depend on the upstream history of the flow and
not just the local flow conditions. An obvious way to provide such a depen-
dence of 2 on the flow is to develop a partial differential equation for the
transport of & This then is the main motivation behind the two-equation
models.

The two-equation models involve an additional partial differential
equation which in effect provides the turbulence length scale. Researchers
have experienced better success by solving a transport equation for a variable
related to the turbulence length scale rather than the length scale itself."
The other transport equation used is for turbulent kinetic energy and is the
same one used in one-equation models.

One of the most popular two-equation models is the k-¢ model of Jones

and Launder.*’3> Here € is a turbulent dissipation rate and is assumed to be
related to other model parameters:

372

€~ 5. (8)

The turbulent eddy viscosity is related to e as:

uT = Cup -_ (9)

31. P. Bradshaw, D. H. Ferris, and N. P. Atwell, "Caleulation of Boundary
Layer Development Using the Turbulent Energy Equation, " Jourmal of Fluid .
Mechanics, No. 28, p. 5§93, 1967. ]
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L =xy ; «k=.41, (4)

It is well known that the turbulence must be damped out very near the |
wall in the viscous sublayer. Van Driest?® proposed an exponential damping
factor as suggested by analogy with the way in which velocity fluctuations are
observed to decay near an oscillating flat plate in Taminar flow. This mixing
length proposal gives,

+ hd ]
2=y (1- e /26, (5)

For flows with heat transfer a simple model can similarly be developed for the
apparent turbulent conductivity. These simple models have been modified and -

used with considerable success to compute a relatively wide range of turbulent 1)
flows. 10224530

2. One-Equation Models. Although the simple algebraic model works
remarkably well with a range of flow situations, it has the shortcoming of

predicting Wy as zero whenever %% = 0. This is not true under all conditions. )
For example, at the center line of a pipe %% = 0 but by is not. This
deficiency can be corrected; but the applicability of the algebraic models is
Timited to near-equilibrium flows. Most of the flows in the real world
include regions which are far from equilibrium. A1l these factors provide
motivation for considering other interpretations for My and require the
application of more advanced turbulence models.

nd R

One-equation models are models which require the solution of a trans-
port partial differential equation for the turbulent velocity scale to evalu-
ate the Reynolds stress. The length scale, & is still specified algebraical-
ly. The turbulent velocity scale Vy is written as the square root of the

. l.!",'.".‘ o

turbulent kinetic energy k defined as:

k = % (U2 + v°2 + wo2) (6)

’ J P -‘
e .. .

and the transport equation developed for k is usually used. Thus, Wy can be
written as:

o
R
el 4

.
"

29. E. R. Van Driest, '"On Turbulent Flow Near a Wall," Journal of the Aero-
nautical Seiences, Vol. 23, No. 11, November 1956.

A Jd A
! I‘ .‘ v. l.‘l.. "“
L ’

30. W. C. Reynolds, '"Computatiom of Turbulent Flows,'" Arm. Rev. Fiuid Mech.,
VOZ. 8, 1976, ppo 183"208.
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Reynolds-averaged Navier-Stokes equations are used in this study. The infor-
mation lost in the averaging process is supplied, in an approximate fashion,
by a turbulence model.

Various turbulence models have been proposed over the years ranging from
simple algebraic eddy-viscosity formulations to sophisticated Reynolds stress-
equations models. Most models can be categorized as either a turbulent eddy
viscosity model or a Reynolds stress model. For simplicity the models are
described as applied to boundary layer flows.

A. Turbulent Eddy Viscosity Models

This class of model is based on a concept originally advanced by
Boussinesq in 1877. The assumption is that the turbulent shearing stress can
be related to the rate of mean strain through an apparent turbulent viscosity:

[] [ a
-pu'v' =g 33 . (1)

Models of this type can be quite simple or complex depending on how My is
related to other flow variables. A brief description of some turbulent vis-
cosity concepts is given below in increasing order of complexity.

1. Zero-Equation (Algebraic) Models. One of the most successful simple
model was suggested by Prandti in 1925:

ur = 022 |3 (2)

where & is a mixing length, a characteristic length scale of turbulence. An
excellent explanation of the origin of the model is given by Launder and
Spalding (see Bibliography) who presented it in a form analogous to that for
the molecular viscosity as given by kinetic theory of gases. As a result of

this analog, % \%% can be interpreted as a characteristic velocity of turbu-

lence, Vy; and & can be regarded as a mean free path for collision of globules
of tiuid. Thus, uyp can be thought of as:

The mixing length £ is specified as an algebraic function of local flow param-
eters in the simple models. Prandt]l observed that the mixing length is pro-
portional to the transverse distance i.e.,

15




of computing such complex flows on various geometric shapes are available. A
strong need, however, exists for a general turbulence model that can be used
to compute such complex flow fields of practical interest. The two-equation
turbulence model has less empiricism and wider applicability to a class of
complex fluid problems than the algebraic model. The extension of the Navier-
Stokes algorithm to this model would thus be an important advance. The objec-
tive of the present research, therefore, 1is to 1incorporate into a time
dependent, thin-layer Navier-Stokes code, a two-equation turbulence model
which uses the same implicit algorithm and generalized geometry formulation.

Numerical computations are made of two transonic flows (i) attached flow
over an axisymmetric projectile and (ii) separated turbulent flow over an axi-
symmetric bump model. Computations are also made for the same flow situations
using the zero-equation eddy viscosity turbulence model. Both turbulence
models are assessed by comparing calculated values of wall pressure distri-
bution and profiles of velocity, turbulent kinetic energy and Reynolds shear
stress with experimental measurements.

IT. TURBULENCE MODELS

The computation of an entire turbulent flow field by direct numerical
solution of the time dependent conservation equations is, at present, impossi-
ble due to the extremely fine grid-spacing required to resolve the smallest
significant eddies of the flow and the extremely small allowable time-step.
This approach to turbulent flow computations requires computers with storage
and speed capabilities far beyond those currently available. The usual point
of departure in practical applications is an averaged version of the conserva-
tion equations. The averaging process introduces new unknown variables, which
must be modeled in terms of other quantities. Averaged equations may be
derived through time- or mass-weighted averaging at flow field points or by
averaging the conservation equations over space. The latter technique, known
as “"subgrid modelling" or “"large eddy simulation,” is prohibitively expensive
for solving practical problems.

Large eddy simulation is a powerful research t0012%728 and falls between
the direct simulation of turbulent flows and Reynolds-averaged Navier-Stokes
calculations both in cost and accuracy. Because of the cost involved, this
technique is not used for engineering flow predictions at present. This kind
of approach will ultimately provide more understanding and will eventually
guide the development of models that include more physical information.

26. A. Leomard, "Panel Discussion: Large Eddy Simulation Techniques," AIAA
Paper No. 83-1878-CP, July 1983.

27. K. Dang, "Evaluation of Simple Subgrid-Scale Models for the Numerical
Simulation of Homogeneous Isotropic and Anisotropic Turbulence, " AIAA
Paper No. 83-1692, July 1983.

28. P. Moin, "Probing Turbulence via Large Eddy Simulation, " AIAA Paper No.
84-0174, January 1984.
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modified by the explicit implicit-characteristic algorithm of Reference 19.
Viegas et all? have used this calculation procedure to study various shock-
wave turbulent boundary-layer interaction fiows bot“ at transonic and super-
sonic speeds. ==

Recently, codes have been developed20” 22 which solve the compressible set
of Reynolds-averaged thin-layer Navier-Stokes equations for high Reynolds
number flows. Parabolized Navier-Stokes20 computational technique is used for
the computation of supersonic flows whereas the unsteady Navier-Stokes e
codes?21°22 can be used for both transonic and supersonic computations. The - -
thin-layer Navier-Stokes equations are cast in strong conservation law form. .
The equation formulation allows for arbitrary body geometries and is solved
using an implicit, approximately factored, finite difference scheme by Beam
and Warming.23 The turbulence model used is an algebraic two layer eddy vis-
cosity model reported by Baldwin and Lomax.2* Such simple models contain a
large amount of empiricism which tends to make these models inadequate for -
complex turbulent flows.23

Real world problems such as the transonic turbulent flow over a projec-
tile are complex due to the presence of shock waves. The flow field is char-
acterized by shock wave-boundary layer, viscous-inviscid interactions, and the
large separated flow region behind the projectile base. It is advantageous to -
use the thin-layer Navier-Stokes computational technique described above in
that it considers these interactions in a fully coupled manner. As the capa-
bility for computing more complex flows expands, the need to develop a more
general turbulence model also expands. Navier-Stokes codes that are capable

19. R. W. MacCormack, "An Efficient Numerical Method for Solving the Time-
Dependent Compressible Navien-Stokes Equations at High Reynolds Number, "
Computing in Applied Mechanics, AMD Vol. 18, ASME, 1976.

20. L. B. Schiff and J. L. Steger, "Numerical Simulation of Steady Supersonic -
Viscous Flow," AIAA Paper No. 79-0130, January 1979.

21. J. L. Steger, "Implicit Finite Difference Simulation of Flow About Arbi-
trary Geometrieg with Application to Airfoils," AIAA Journal, Vol. 16,
No. 4, July 1978, pp. 679-686. —

22. 7. H. Pulliam and J. L. Steger, '"On Implicit Finite-Difference Simula~
tions of Three-Dimenstonal Flow," AIAA Journal, Vol. 18, No. 2, February
1980, pp. 159-167. —

23. R. Beam and R. F. Warming, "An Implicit Factored Scheme for the Compres- :
sible Navien-Stokes Equations," AIAA Paper No. 77-645, June 1977. -

24. B. S. Baldwin and H. Lumax, "Thin Layer Approximation and Algebraic Model
for Separated Turbulent Flows,'" AIAA Paper No. 78-257, January 1978.

25. M. Viebal and D. Knight, "Evaluation of the Baldwin-Lomax Turbulence
Model for Two-Dimeneional Shock Wave Boundary Layer Interactions,' AIAA -
Paper No. 83-1697, July 1983.
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turbulent boundary layers by Harrisll and Cebeci et all3 among others.
Patankar and Spalding!? obtained a finite-difference scheme by expressing each .
term in the governing equations as an integrated average over a small control -
volume defined by the grid. Their general calculation procedure was applied
to a wide variety of flows with considerable success. The Thomas algorithm
for solving the tridiagonal system of equations is usually employed. The
Keller box method!“ has been adapted to turbulent boundary layer calculations
by Keller and Cebeci.l®

The method developed by Keller for parabolic problems is second order )
accurate on an arbitrary nonuniform grid network. The box-scheme, being an
implicit method, is stable with no restrictions on the grid size in the
streamwise direction. This method requires the solution of ablock-tridiag-
onal system of equations. Blottnerl“ proposed a Crank-Nicolson scheme using
a variable grid and claims that his scheme has the same accuracy as the Keller -
box scheme and is more efficient for parabolic equations. The calculation )
methods described thus far are applicable to boundary layer flows.

For many flow situations where shock wave turbulent boundary layer inter-
actions are important, boundary layer techniques are inadequate. For such
complex flows the differential equations used to describe the mean flow are

-y

the Reynold-averaged Navier-Stokes equations. Excellent reviews of the
closure concepts for these equations can be found in the Bibliography. The
mean flow and the turbulence field equations are solved simultaneously in
References 15-17. The numerical procedure used is the basic second-order,
predictor-corrector, finite-difference, time-splitting method of McCor‘mack,18
)
13. T. Cebeei, A. M. 0. Smith, and G. Mosinskis, '"Caleulation of Compressible
1dZabatic Turbulent Boundary Layere," AIAA Journal, Vol. 8§, November -
1270, pp. 1974-1982. T ]
14. ~. G. Blottner, '"Variable Grid Scheme Applied to Turbulent Boundary
Layers, " Computer Methods in Applied Mechanice and Engineering, 4, 1974,
op. 179-194.
15. T. J. Coakley and J. R. Viegas, "Turbulence Modeling of Shock Separated ]
Roundary-Layer Flows," Paper presented at the Symposium on Turbulent
Thear Flows, University Park, PA, April 1977.
16. -'. R. Viegas and T. J. Coakley, '"Numerical Investigation of Turbulence
Yodels for Shock-Separated Boundary~Layer Flows," AIAA Jourmal, Vol. 16,
‘o. 4, April 1978. ) - A ]
17. 1. R. Viegas and C. C. Horstman, 'Comparison of Multiequation Turbulence
olels for Several Shock Boundary-Layer Interaction Flows," AIAA Journal,
i"s'. 17, Auguet 1979, pp. 811-820.
18. . W. MacCormack, '"Numerical Solution of the Interaction of a Shock Wave ]

2ith a Laminar Boundary Layer," Lecture Notee in Phyeics, Vol. 8,
rringer-Verlag, 1971, pp. 157-163.
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It is added to balance the molecular diffusion term in a manner exactly
analogousto the added term in the k equation. The exponential ensures that
this term decays rapidly and its effect is felt only close to the wall,

Additionally, the definition of Cu has been modified to include the damp-

ing effect due to the presence of the solid wa'l in the manner of Van Driest's
proposal.

C, = 0.09 (1 - exp (- 0.01 y)1. (23)

In the Jones-Launder model this coefficient is defined in terms of the turbu-
lent Reynolds number. With these modifications the k-e model now takes the
foliowing form:

Dk _ 9 Hr, Ak 3y k
Ppf 3y [(u +‘g;)‘§y 1+ ur (gy) - pe - 2u ;E (24)
De _ 3 M7, 8e € [dUyp
p ot 3’)7 [( 'g;) ‘3’5; CluT kK (’3‘9)
2 1 +
-czpf——-Zu%exp(-vzy) (25)
- k2
UT = Cupe—'

where Cu is given by Equation (23) and

Cl = 1.44

k2
ve

¢z = 1.92 [1 - 0.3 exp (-R)], Ry =

A more general form of the k-e equations than described above is given by
Launder, Sharma and Pridden® as
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Dk 3 Yt ak i i j
ot = 30 Lo * W) axd * v ax; Gxs *oax)
J k J h] j i
(26) '
1/2 y
- e - 2u (By)? :
j Ny
du. odu, u .
De _ 9 My € 1 i J
e = o Ligm + ) + cuwg g ax; Gaxs * 3x)) .
J € J J i z
(27)
2 azui
-Cyp %— + C3vmy (EYIEXE)Z

where k is the turbulent kinetic energy, € is the turbulent dissipation rate
and My is the turbulent viscosity and are given as,

12 .2 -2
k = = (U"2 + v°2 + w2

BU‘i ak1/2 .l
€ = (31;-)2 - 2v (—5Y3_)2 (28) -
, k2

The empirical coefficients in Equations (26)-(28) are given below:

Cu = 0.09 exp [-3.4/(1 + 0.02Rt)2]
_ k2

Ry = 3¢

c = 1.44

27
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co = 1.92 [1 - 0.3 exp (- th)] (29)
C3 = 2.0
9 = 1.0
o = 1.3.

Chien‘'s modifications are included and the model used in this study is as
follows:

d t i j
Dk —YS [( + u) ] oy 3X1 (—Xi + 37%)
(30)
- pe -~ 2y —
Y
u, du. au,
De 9 € i 1 1
P Bt T X, [(“—* 2 T] e xoa Gt
(31)

e2 "
ey 0 S e V2
k y2
n

where y, is the distance normal to the surface and the empirical coefficients
given by Equation (23) and (29).

III. NAVIER-STOKES COMPUTATIONAL TECHNIQUE

A. Governing Equations

The three dimensional thin-layer Navier-Stokes equations are presented
and are then reduced to the axisymmetric formulation. To enhance numerical
accuracy and efficiency, coordinate mappings of the governing equations are
employed. This brings the body surface onto a coordinate surface (body-fitted
system) and clusters grid points in flow field regions where dependent vari-
ables are expected to undergo rapid changes (boundary layer for example). In
the transformed plane, uniform discretization formulas and well-ordered
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interior grid point solution algorithms can be used. Related work using
transformed equations in flow field applications can be found in References
21, 44-46,

The governing equations are transformed using the following general
coordinate transformations:

£ = &(x,y,2,t)
n = n(x,y,z,t)
g = g(x,y,2Z,t)
T=1

The equations are written in strong conservation law form and the transforma-
tion retains this form.“7 The resulting transformed three dimensional thin-
layer Navier-Stokes equations can be written in nondimensional form as

2.9+ 3, + 3 F+2G=Re2S (32)

where
5 ] C e
pu pul + £ p
A—-l A_ -1 x
q=4J pv E=J va+Eyp
oW pwl + £ p
e (e+p)U - gtp
S - —

44. G. S. Deiwert, "Numerical Simulation of High Reynolds Number Transonic
Flows," AIAA Journal, Vol. 13, No. 10, October 1975, pp. 1354-1359.

45. P. Kutler, S. R. Chakravarthy, and C. K. Lombard, "Supersonic Flow Over
Ablated Nosetips Using an Uneteady Implicit Numerical Procedure, " AIAA
Paper 78-213, 1978.

46. R. W. MacCormack and A. J. Paullay, "The Influence of the Computational
Mesh on Accuracy for Initial Value Problems with Digcontinuous or Non-
unique Solutiome, " Computers and Fluids, Vol. 2, 1974, pp. 339-361.

47. H. Viviand, "Conservative Forms of Gas Dynamic Equatioms," La Recherche
Aeroepatile, No. 1, January-February 1974, pp. 65-68. SO
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(erp)V - nyp] (e+P)W - 24p)
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u(cx+cy+cz)uc + (u/3)(cxuz+cyvc+czwg)cx
u(¢2+cz+c2)v + (u/3) (g u+g v +e w e
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{(§x+cy+cz) [0.5u (U +v +w )C + kPr "(y - 1) "(a )C]
i + (u/3)(cxu+cyv+czw)(cxygcyvgczwg)} _
The velocities
U= gt + Exu + Eyv + azw
vV = ng * nut nyv +onw (33)
W= Ct + CXU + CyV + CZW

represent the contravarient velocity components.

The Cartesian velocity components (u,v,w) are retained as the dependent
variables and are non-dimensionalized with respect to a_ (the free stream
speed of sound). Pressure is defined as

p=(y-1)[e- .5 (u?+ v2+ w2)] (34)

where vy is the ratio of specific heats, p is the density referenced to p_ and
e is the total energy referenced to o ai. The additional parameters are («)
the coefficient of thermal conductivity; (u) the dynamic viscosity, (Re) the
Reynolds number, (Pr) the Prandtl number, and () which through the Stokes
hypothesis is (-2/3)u.
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The metric terms of Equation (32) are defined from

Ex = J(y“zc - yczn) n, = J(Zgy; - tgzg)
Ey = J(znxc - xnzc) ny = J(xgz; - xczE)
EZ = \J(xnyc - ynxc) n, = J(ygxc - xgyc)
(35)
o © J(yizn B Zﬁyn) by T Xy - yrgy - 45,
cy = J(xnz€ - xgzn) Ny = - XN - yTny -z,
%2 ° J(xEyn - yﬁxn) I L R i
and
J'l = X,y Z + X Y,Z + XY Z, ~ X Y.Z - XY.Z ~XYy2
£'n"g z7E nvgog £7¢"n nETg z'n"g

where J is the Jacobian of the transformation. For the computation of turbu-
lent flows, u and « comprise of their molecular and turbulent counterparts.
The turbulent contribution My and Ky are supplied through an eddy viscosity

hypothesis described in Section II.

The "thin-layer" approximation21’22°24 j5 ysed here and is valid for high
Reynolds number flows. In high Reynolds number flows one usually has only
enough grid points to resolve viscous terms in a thin layer near the body sur-
face. Essentially, all the viscous terms in the coordinate directions (here
taken as £ and n) along the body surface are neglected while terms in the ¢ or
the near normal direction to the body are retained. This approximation is
used because, due to computer speed and storage limitations, fine grid spacing
can only be provided in one coordinate direction (usually taken as the near
normal direction) and the grid spacing available in the other two directions
is usually too coarse to resolve the viscous terms.

The three dimensional set of equations are then reduced to obtain the
azimuthal-invariant or n-invariant equations“® by making use of two restric-
tions: (1) all body geometries are of an axisymmetric type; {2) the state

48. C. J. Nietubica, T. H. Pulliam, and J. L. Steger, "Numerical Solution of
the Azimuthal-Invariant Thin-Layer Navien-Stokes Equatione, " U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02227, March 1980. (AD A085716) (Aleo see AIAA Jourmal, Vol. 18, No.
12, December 1980.)
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variables and the contravariant velocities do not vary in the azimuthal direc-
tion. Here n is used for the azimuthal coordinate. A sketch of a typical

axisymmetric body and the coordinate system is shown in Figure 1. The anF

term of Equation (32) is thus reduced to a source term of the n-invariant
equations. The resulting thin-layer n-invariant or axisymmetric Navier-Stokes
equations are then written as

3.q+ 3 E+2G+H=RetasS (36)

where

H=1J oV (R, (U - &) +R(W-g)}
- eV R(V - n, ) - PR

L 0 -

and a, E, G and S are as defined in Equation (32). The metric terms of Equa-
tion (35) are modified as:

€y = J RRg n, = 0
=0 = 1/R
€y ny /
£. = - JRx n =0
z E z (37)
oy = - IR, £ = R(x R, - xR)
Cy =0 ﬂt =0
g, = JRxg & = JR(xng - RTxg) i;z ‘
N
with . }
1
b 2 R(x.R_ - x.R,) SR
£z 3
[
and ‘1
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R =12z (see Figure 1).

Equation (36) contains only two spatial derivatives but does retain all three
momentum equations thus allowing a degree of generality over the standard axi-
symmetric equations. In particular, the circumferential velocity is not
assumed to be zero. This allows computations for spinning projectiles or
swirl flow to be accomplished. The n-invariant equations have been used in a
number of flow field applications“® %3 and is utilized in the present study.

B. Numerical Method

An implicit approximate factorization finite-difference scheme in delta
form is used as described by Beam and Warming.23 An implicit method was
chosen because it permits a time step much greater than that allowedby explic-
it schemes. For problems in which the transient solution is of no interest,
this offers the possible advantage of being able to reach the steady state
solution faster than existing explicit schemes.

The Beam-Warming implicit algorithm has been used in various applica-
tions. 20724248753 The algorithm can be first or second order accurate in time
and second or fourth order accurate in space. The equations are factored
(spatially split) which reduces the solution process to one-dimensional prob-
lems at a given time level. Central difference operators are employed and
the algorithm produces block tridiagonal systems for each space coordinate.
The main computational work is contained in the solution of these block tri-
diagonal systems of equations.

49. C. J. Nietubicz, '"Navier-Stokes Computatione for Conventional and Hollow
Projectile Shapes at Transonic Velocities,” U.S5. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03184, July 1982.
(AD A116866) (Also see AIAA Paper No. 81-1262, June 1981.)

50. J. Sahu, C. J. Nietubicz, and J. L. Steger, "Numerical Computation of
Base Flaw for a Projectile at Transonic Speeds, " U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02495,
June 1983. (AD A130293) (Also see AIAA Paper No. 82-1358, August 1982.)

51. J. Sahu, C. J. Nietubicz, and J. L. Steger, '"Navier-Stokes Computations
of Projeetile Base Flow with and without Base Ingjection,'" U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
TR-02532, November 1983. (AD A135783) (Also see AIAA Paper No. 83-0224,
January 1983.)

52. G. S. Diewert, "A Computational Investigation of Supersonic Axisymmetric
Flaw Qver Boattaile Containing a (Centered Propulsive Jet," AIAA Paper No.
83-0462, 10-13 January 1983.

53. J. Sahu and . J. Nietubiez, "Numerical Computation of Base Flow for a

Missile in the Presence of a Centered Jet,'" AIAA Paper No. 84-0527,
January 1984.
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The resulting finite difference equations, written in delta form, are

1

1 an -
VEAEJ)(I + hscc - A VCACJ

(1 + hsgfx" - A

- hRe"ts 7MY x (g™ - g") = -at(sE" + 6 6" (38)
_pe-lg dny an o -1 2 2 931-n
Re™%6 S") - atH" - AJT'[(V 4,)2 + (v.8.)% Ja'.

Here h = At because only first order accuracy in the time differencing is
needed for the steady state flows which are considered here. This choice
corresponds to the Euler implicit time differenciny. The é8's represent
central difference operators, 4 and V are forward and backward difference
operators respectively. The Jacobian matrices A =-§£ , C = 3& along with the
~ aq aq -

coefficient matrix M obtained from the 1local time linearization of S are
described in detail in Reference 22. Fourth order explicit (AE) and implicit

(AI) numerical dissipation terms are incorporated into the differencing scheme

to damp high frequency growth and thus to control the nonlinear instabilities.
A typical range for the smoothing coefficients is AE = (1 to 5) at with Ay =

3AE. Details of the algorithm and the finite difference equations as they
apply to turbulence field equations will be discussed in the next Section.

C. Initial and Boundary Conditions

Free stream values are used as the initial conditions in the entire flow

field domain of interest. Unknown values of g on the boundaries are updated
explicitly and aAq = qn+1 - qn is set to zero, leading to a first order error
in time at the boundaries.

The updated values of q are obtained along the body surface by linear
extrapolation of p, U and V in inviscid flow. In viscous flow pis extrapolat-
ed andU =V = 0. In either case W = 0 and values of u, v and w are obtained
from the following relation.

u nycz 0 -nysz Uy - Et
_ -1
v = J 0 (gxcz - gzcx) 0 vV - " (39)
W -nycx 0 nyEx - &
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For an axisymmetric body spinning with angular velocity w, one would impose
the condition V = Rw on the body surface. Pressure on the body surface is
obtained by numerically integrating the following equation.

2 23p_ 2, 2y
pn(cx * z;Z) - (EXCX * E"ZCZ)DE ¥ (CX * CZ)pC -

p[arct + uaTgx + v(JRxE) + waT(JRxg)] (40)

- 2 -
pU(gxug + czwg) + pV[ngR (v nt)]_

Here P, is the normal pressure gradient at the body surface. Equation (40)
results by combining the three transformed momentum equations.

The axis singularity is handled as in Reference 22 where flow variables
are not required at the axis due to the fact that the required flux vectors
are zero along the singularity. At the far field boundary free stream values
are specified. At the downstream boundary, first-order extrapolation is used
for M_ > 1 while extrapolation and the condition that pressure is fixed at P_
are used for M_ < 1.

IV. SOLUTION OF k-¢ EQUATIONS

A. Turbulence Field Equations

The k-¢ equations used in this study can be written from Section Il as,

Dk 3 Mt ak Suj du; By
°D’f”'§X'J.’[(?|(‘+ ")mq] * “tsx;(sx;’“sx;)
‘ (41)
- pe - 2u —k—..
2
yn
9 ] 9 bik
De _ 3 e € e i °Y uj N
ot " L) ) ] e oar Gyt ) ;
g
(42)
2 -
-C2 P - 2u £ gy /2 4
y3 1
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vhere y, is the distance normal to the surface. The turbulent kinetic energy,
¢ and the turbulent dissipation rate, € are given as

k=3 (U2 + v2+ w2 (43)
-, 1/2
ak
€ = (gy;l)z - 2v 0—§Y3-)2 (44)

(45)

The empirical coefficients in Equations (41), (42) and (45) are given below:

0.09 [1 - exp (-0.01y")]

(gp]
"

2
R, = K

t ve

¢y = 1.44

cp = 1.92 [1 - 0.3 exp (- R2)] (46)
C3 = 2.0

1.0

=

1.3.

Q
]

Expanding and using the continuity equation, we can write Equations (41) fit§c;
and (42) in conservation form as RO
*
. -9
R
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aq ]2 oF oG
t t t . Tt
Y tay TSt (47)
where
pk] [QUR] [pVK]
q, = . E, = ) F, = ,
t pe t pue t pVE
(48)
PWE Se
and
U du. du. ou .
] t ok i i ] uk
S, == (—+ u) 5 + u, m (5 + ) - e - 22 (49)
. 3X. aX. ‘oX, 3X.
k 3XJ Ok t j j i Yﬁ
U au au, ou .
9t e 1, 1 ]
Se=ax: (Gt W ot covpoax, Gt oax)
i e J i
(50)
g2 € -y 2
- ¢y _Qk_ 2 _; y /
Yn

For simplicity the subscript 't' in Equation (47) is omitted and the variables
without the subscript will be used throughout this Section. Thus, Equation -
(47) can be written as '

9q , 8E  aF = 6 _
3t fax T eyt ez T (51)

B. Transformation into Generalized Coordinates

e
PR .
PSPPI SP T

Using the transformation

37

................
................
......




£ = &£(x,y,2,t)
n = n(x,y,z,t)
(52)
;= ¢(x,y,2,t)
T =1t,

uation (51) can be written in transformed coordinates while still retaining
e conservation form*7 as

aq , 3E , oF , 36 _ 3
ot T3 tam Tag T O (53)
iere
~ 1 ok " 1 pkU R 1 pkV
q:j s E=J ’ F=j >
pE pel peV
R pkW “ §
peW Se
1d
§ . [.1 (ﬁE + u)(gz + ;2 + gz).ék ]+ Mt [(gz + g2 + gz)
k ¢ - J o X y 2z’ 3¢ J- X y .
2 2. 2 27 _pe _2uk
R R N R U L B e "
In
s -2l (ﬁ_ ) 2, 2, 2 3 ]+ Ht e [l 2+ 2,
e3¢ - J Yo u) (¢ Sy t;) a% S A A
(u2+v2+w2)+(z;u + v +ow)?]-c 36—2--2££—e‘y+/2
4 g 4 X¢  Cyg zg 2Jk J y2
n
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The velocities U, V and W are the contravariant velocities defined in Equation
'33) and J is the Jacobian of the transformation. The thin-layer approxima-
tion described previously is used here.

Based on the assumptions for axisymmetric flow described in the previous
chapter, the n derivative term in Equation (53) drops out and the axisymmetric
set of turbulence field equations can be written in ncn-dimensional form as

8q , 3E 3(G - H) _ ¢
T T T S (54)
shere
~ ok
97
L PE
o[
! LpeU_
<1 [ ok W
6 =3
[ oel ]
u
(J+ U)ﬂ
1 ) ) ) % 14
7 _ Re © 2
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rictly based on local information and results in such drastic change in
havior.

The turbulent kinetic energy profiles at the same selected stations are
own in Figure 30, The profiles at two stations upstream of the shock are S
own in Figures 30(a) and (b) and compare well with experimental measure- .
nts. Figures 30(c) through (h) show the profiles in the separated region. RSP
e peaks are well predicted by the two-equation k-e model although the loca- .
on of the peaks are slightly underpredicted. Comparison of the profiles f:ig
ry close to the wall indicate poor predictions. In the redeveloping flow )
gion after reattachment the computed profiles with the k-¢ model are in 3
cellent agreement with the experimental data. This is where we have seen
0od agreement in the mean velocity profiles as well.

The location of, and variation in, the maximum turbulent shear stress are
own in Figure 31 and 32 respectively. As shown in Figure 31 the Tocations
‘e well predicted by the k-c model and are in close agreement with the exper-
iental observations except near x/c = 1, i.e., where the aft end of the bump
; affixed to the cylinder. This is in the separated region and the disagree-
'nt is even more clear in the variation of the maximum turbulent shear stress
own in Figure 32. Additionally, Figure 31 clearly shows the peak of the
‘ofiles shifting away from the wail from x/c = .5 to 1.

The location of the maximum turbulent kinetic energy and its streamwise
iriation are shown in Figures 33 and 34, respectively. As seen in Figure 33
e location of the peaks further shift from the wall from x/c = .5 to 1.0 and
'en falls off in the same way observed by the experimental data. Although
e trend is the same, the calculations underpredict the Tocation of the peaks
“jgure 33) and overpredict the values of the maximum turbulent kinetic
vergies (Figure 34). It is also clear from these figures that the k-e model
~edictions are in good agreement with the experimental data in the redevelop-
1g region (x/c = 1.25).

VI. CONCLUDING REMARKS ]

Objectives

The objectives of the reported research were:

(1) formulate the k-e turbulence model in general spatial coordinates 1
ad incorporate it into a compressible, axisymmetric, thin-layer Navier-Stokes :
yde,

(2) apply the resulting solver to two transonic flows for which experi- _"5
:ntal data are available,

(i) an ogive-cylinder-boattail projectile configuration at M_ = .94
d .97

(i1) an axisymmetric bump configuration at M_ = .875 which involves
scal shock induces separation
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ence of a strong shock wave on the model. The pocket of supersonic flow
on (M > 1) can also be seen. Figure 23 shows the pressure contours in the
I field near the bump. As can be seen the flow over the front portion of
model expands. The shock wave can be clearly seen to exist on the aft ®
.ion of the circular-arc bump. These qualitative features are predicted by ,
| the algebraic and k-¢ models. o]

Figure 24 shows the velocity vectors over the aft end of the bump obtain-
vith the algebraic model. Flow separates and the reverse flow region can
seen in this figure. To show the separation bubble more clearly stream e
:tion contours are plotted in Figure 25. The two-equation k-c¢ model pre-
:ion is shown in Figure 26. This model predicts a smaller separated
ion. The two-equation models generally predict poorly in the separated
ion and do well in the redeveloping flow region after reattachment.39 This
1t will be discussed in a later section.

Figure 27 is a plot of the surface pressure distribution as a function of
longitudinal position. The surface pressure is referenced to the total
ssure. The longitudinal position in this plot, and plots to follow, is
erenced to the leading edge of the bump excluding the fairing i.e., the
ersecting point of the arc of the bump with the cylinder (see Figure 19).
puted results are obtained with both turbulence models and are compared ®
h experiment. The position of the shock wave is well predicted by both the
els; however there is a small disagreement in the region downstream of the
ck. The largest discrepancy is about 15% and could partly be due to the
ge grid spacings used in the redeveloping flow region.

Development of the mean velocity, turbulent shear stress and turbulent ®
etic energy profiles over the aft portion and just downstream of the bump

shown in Figures 28, 29 and 30 respectively. The mean velocity profiles

shown in Figures 28(a) - 28(f). Flow separation occurs as shown in Figure
a). Figures 28(a) through 28(c) show the mean velocity profiles in the
arated reqion. As pointed out earlier, the k-e¢ model predicts a thin o
ersed flow region. It is especially true at the stations selected in the ®
arated region. Elsewhere in the separated region, however, it is not T
ignificant (see Figure 26). Although a thicker separated region ispredict-

by the algebraic model, the profiles are poorly predicted by both the
els. Away from the wall, k-e model calculations show better agreement with

experimental data. Poor predictions for both turbulence models can be
erved in Figure 28(d) at the station just upstream of reattachment. The °
evelopment of the flow after reattachment is shown in Figures 28(e) and -
f). Here the k-e model produced a solution that more closely represents

experimental data than did the algebraic model.

Figure 29 shows the turbulent shear stress at selected streamwise sta- }
ns. As evident from this figure, the k-e model predicts the turbulent °
ar stress profiles which are in close qualitative agreement with the
erimental aata. The peaks are not as well predicted however. Additional-
the location of the peaks shifts further away from the wall just as deter-

ed experimentally and k-¢ model successfully predicts the rate of peak

placement as shown in Figures 29(a) through 29(g). The algebraic model on )
other hand predicts sharp increase or decrease in the turbulent shear ®

ess as seen in Figure 29(c)-(e) and 29(f)-(h). It grossly underpredicts i
turbulent shear stress in Fiqures 29(d) and 29(g). The algebraic model is
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Bachalo and Johnson.®1°®2 The data was obtained in the NASA Ames 2x2-Foot
Transonic Wind Tunnel using a LDV technique. Calculated results using both
the algebraic and the k-e models are compared with these experimental data.

A schematic diagram of the model and its associated flow field is shown
in Figure 19, The model consists of an annular circular-arc bump affixed to a
thin-walled cylinder of outer diameter 15.2 cm. The bump has a thickness of
1.9 cm and a chord length of 20.3 cm. Its leading edge is joined to the
cylinder by a smooth circular arc of radius 18.3 cm that is tangent to the
cylinder at 3.33 cm upstream and to the bump at 2.05 cm downstream of the
intersection of the arc of the bump with the cylinder., In other words, a
fairing is used in the Teading edge of the bump. The flow field contains a
separated region which is induced by a shock wave.

The computational mesh for this case was obtained using a hyperbolic grid
generation scheme.®3’6* The grid generated this way is orthogonal. The full
grid is shown in Figure 20 whereas Figure 21 shows an expanded view of the
grid near the bump model. Most of the grid points are clustered on the aft
portion and just downstream of the circular-arc bump in the flow direction.
The grid points in the normal direction were exponentially stretched away from
the wall. The first point was taken to be .00001D away from the model surface

which correspond to y* of about 0.5. The number of grid points used was 78
and 40 in the longitudinal and normal directions, respectively.

The upstream boundary conditions were prescribed by uniform free stream
conditions. First order extrapolation was used at the downstream boundary.
The no slip boundary condition was used on the wall and free stream conditions
were used at the far field outer boundary. For the turbulence variables with
the k-e two-equation model, k and € were set to zero on the wall and at the
upstream boundary. Zero derivatives of k and € were used at the outer and
downstream boundaries.

Figures 22 and 23 show the qualitative features of the flow field near
the bump model. Figure 22 is a Mach contour plot and clearly indicates the

61. W. D. Bachalo and D. A. Johnson, "An Investigation of Transonic Turbulent
Boundary Layer Separation Generated onm an Axisymmetric Flow Model," AIAA
Paper No. 79-1479, 1979.

62. D. A. Johnson, C. C. Horstman, and W. D. Bachalo, "Comparison Between
Experiment and Prediction for a Transonic Turbulent Separated Flow," AIAA
Journal, Vol. 20, No. 6, June 1982, pp. 737-744.

63. J. [. Steger and D. S. Chaussee, "Generation of Body Fitted Coordinates
Using Hyperbolic Partial Differential Equations," FSI Report 80~1, Flow
Simulations, Inc., Sunnyvale, CA, January 1980.

64. C. J. Nietubicz, K. R. Heavey, and J. L. Steger, "Grid Generation Tech-
niques for Projectile Corfiguratians,” ARO Report 82-3, Proceedings of
the 1982 Army Numerical Analysie and Computers Conference.
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to those discussed previously for M = .94, The peak values occur at y+ = 25.

k increases over the boattail corner (X/D = 5.05 to 5.36) and then decreases
over the boattail. The turbulent dissipation rate profiles are shown in
Figure 13. These profiles behave better than k profiles in the region outside
the edge of the boundary layer and drop off to small values without the
presence of any humps in the profiles in that region. As expected, the peaks

in ¢ profiles occur closer to the wall (y+ = 10) than those of the k profiles

+
(y =25).

Figures 14 and 15 show the turbulent eddy viscosity profiles obtained
with the algebraic model and the k-¢ model, respectively, and are plotted in
physical y coordinate. My rises to its peak and then drops off sharply over a

very small distance from the surface. The magnitudes of My at each of these

longitudinal stations differ in both the model predictions and are clearly
shown in the next Figure 16, Figure 16 is plotted in the law of the wall
coordinate and shows the variation of Wy near the wall more clearly. The

profiles with k- model have sharper peaks compared to those obtained with the
algebraic model. Algebraic model predicts sharp increase (X/D = 5.61 to 6.19)
and decrease (X/D = 5.05 to 5.36) in My whereas k-e model predicts rather

gradual change since it takes into account the upstream effects. Comparison
of My profiles at X/D = 5.36 and 5.61 shows poor agreement and comparison at

the other three stations shows good agreement. This kind of a disagreement is
local and may not have a large overall influence on the results.

Figure 17 shows the mean velocity profiles at the same longitudinal sta-
tions. There is very slight difference between the computed results obtained
with both turbulence models. Comparison of the calculated profiles have been
made with experimental data at X/D = 5.05, 5.36 and 5.61 and the comparison in
general shows good agreement, The slight difference in the computed results
and experimental measurements is for the X/D = 5.36 case. This profile is
only .06 calibers downstream of the boattail corner and is in the vicinity of
severe expansion. The experimental data was reduced using wall static pres-
sure measurements. The greater the distance from the wall, the more the veloc-
jty data may be in error. This is particularly true just downstream of the
expansion corner where the profile may extend through the expansion fan with
significantly varying static pressures. A small error in experimental
measurements thus could account for the slight difference. The computed and
experimental surface pressure coefficient are again shown in Figure 18 and
compare favorably.

B. Separated Flow Over an Axisymmetric Bump

Numerical computations have been made for a transonic turbulent separated ]
flow over a bump model. A1l the computed results shown are for M = 0.875, a = T
0° and Re = 13.6 x 108/m. Experimental measurements of the mean flow quanti-
ties as well as the turbulence variables for the same model have been made by
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corner and X/D = 5.36 is just after the boattail corner. Because of the
severe expansion at the boattail junction, the turbulence kinetic energy is
increased by a factor of two between these stations. It then drops off on the
boattail as shown by the profiles at stations X/D = 5.61 and 6.19. The humps
in these profiles are believed to be the result of the interaction of the
shock and expansion waves with the turbulent boundary layer and occur outside

the edge of the boundary layer. The peaks in the k profiles occur at y+ = 20
although the peak is moved slightly further away from the wall near the boat-
tail corner i.e., between X/D = 5,05 and 5.36. As shown in Figure 7 the
turbulence dissipation rate profiles show identical behavior for the same
stations with the exception that there are no humps present in the region out-
side the edge of the boundary layer. Additionally, the peaks now occur closer

to the wall at y+ = 10. This agrees with the observed behavior of the peaks
in Reference 41.

Turbulent eddy viscosities are found from k and € with the two-equation
model and algebraically using Baldwin and Lomax model. These are referenced
to the molecular viscosity u_ and plotted in Figures 8 and 9 for the same
longitudinal positions discussed above, Figure 8 shows the My profiles

obtained with the algebraic model. The profiles have rather flat peaks and go
to zero outside the boundary layer. It drops off sharply in magnitude near
the boattail corner i.e., X/D = 5,05 to 5.36 and then rises sharply on the
boattail as seen by the profiles between X/D = 5.61 and 6.19. The algebraic
model is based on local information and such sharp increase or decrease in My

results. The My profiles obtained with the k-e¢ model on the other hand shows
gradual change in uy on the boattail as seen in Figure 9. The profiles have

sharper peaks and then fall off to values other than zero outside the edge of
the boundary layer. Although k and € profiles drop off to practically zero,
k2/e does not drop off from its peak value monotonically with increasing dis-
tance from the surface and results in non-zero ut's. The mean flow gradients
outside the boundary layer are, however, exceedingly small and these ut's in
no way adversely affect the solution of the mean flow quantities.

Figure 10 shows the mean velocity profiles at the same selected stations.
Velocity profiles obtained with both turbulence models compare well at X/D =
3.42 and 6.19. Experimental data is available at the other three stations and
are used for comparison with the calculations. Both models predict almost the
same profile at X/D = 5.05 and comparison with experiment is good. Just down-
stream of the boattail corner i.e., at X/D = 5.36 and 5.61, comparison of the
k-€ calculations with experiment are in better agreement than the algebraic
model predictions. Figure 11 is a plot of the surface pressure distribution
as a function of the longitudinal position over the projectile. The rapid
expansion at the ogive and boattail junctions is apparent. Computed results
obtained with both models are compared with experiment and the results are in
good agreement. A small improvement of the results with k-¢ model can be seen
on the boattail.

Results are now presented for another Mach number, M = ,97 where strong
shock/boundary layer interactions occur. Figure 12 shows the turbulent
kinetic energy profiles at various longitudinal positions. These look similar
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Before performing the computations, the flow field domain of interest
must be discretized. The computational grid used for the numerical computa-
tions was obtained from a versatile grid generation program developed by
Steger, et al.5® This program allows arbitrary grid point clustering thus
enabling grid points to be clustered near the body surface and is based on the
elliptic grid generation scheme advocated by Thompson, et al.®% In this
method the grid in the physical plane is defined by the solution of a Laplace
or a Poisson equation and the generated grid is not orthogonal.

The full grid is shown in Figure 4. The computational domain extended to
four model Tengths in front, four model lengths in the normal direction and
four model lengths behind the projectile. Such an extended domain is used to
eliminate the possibility of any wave reflection back on to the model. The
grid consists of 78 points in the longitudinal direction and 40 points in the
normal direction. An expanded view of the grid near the model is shown in
Figure 5. The dark region near the model surface results from clustering of
grid points which are needed to resolve the viscous bhoundary layer region.
The grid points in the normal direction were exponentially stretched away from
the surface with a minimum spacing at the wall of .00002 D. This spacing
locates at least two to three points within the laminar sublayer. Clustering
in the longitudinal direction was used at X/D = 3.2 and 5.3, the ogive and
boattail junction, respectively, where appreciable changes in the flow vari-
ables are expected.

The projectile base was modeled as an extension of the 7.0° boattail for
a distance of two calibers. The surface line was then turned parallel to the
model axis for the remainder of the wake region. The base flow is thus
modeled as an extended sting. A review of free-flight shadowgraphs for pro-
jectile shapes at transonic speeds does show the wake flow to follow near the
boattail angle for a distance of one to three calibers before turning parallel
to the flow direction.

Results are first presented for M_ = .94 and a = 0. The turbulence quan-
tities k and e obtained with the two-equation turbulence model are shown in
Figures 6 and 7, respectively, for selected longitudinal stations. One of the
longitudinal stations selected is near the ogive-cylinder junction and the
others are located either near the boattail junction or on the boattail
itself. Note that the station X/D = 6.19 is on the extension of the boattail.
The k-¢ model prediction is compared with that of the algebraic model at this
station. Figure 6 shows the turbulence kinetic energy profiles in the law of
the wall coordinate. The station X/D = 5.05 is in front of the boattail

59. J. L. Steger, C. J. Nietubicz, and K. R. Heavey, "A General Curvilinear
Grid Gemeration Program for Projectile Configuratioms, " U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-
MR-03142, October 1981. (AD A107334)

60. J. F. Thompson, F. C. Thames, and C. M. Mastin, "Automatic Numerical S
Generation of Body-Fitted Curvilinear Coordinate System for Field L
Containing Any Number of Arbitrary Two-Dimemgional Bodies, " Journal of
Comp. Physics, Vol. 15, 1974, pp. 299-3139.
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3k _ 3 _ (71)

At the upstream boundary k and € are set to zero while a first-order extrapo-
lation is used at the downstream boundary.

G. Coupling with Mean Flow Equations

The Equation (38) is solved first by the method described in Chapter III
for the mean flow quantities. Next the turbulence field Equations (63) are
solved using the just computed mean flow quantities. Solution of Equations
(63) give k and ¢ and Equation (56) is then used to compute My This then

becomes the input in the solution of Equation (38) for mean flow variables and
this process is continued at each time step until steady state results are
achieved. The solution procedure of the turbulence field equations lag that
of the mean flow equations by one time step.

V. RESULTS

Numerical computations have been made for two transonic turbulent flow
cases: (i) attached flow over an axisymmetric projectile; and (ii) separated
flow over an axisymmetric bump model. Both the algebraic and the two-equation
k-¢ eddy viscosity turbulence models were used. Computed results are present-
ed in the form of surface pressure plots, velocity, turbulent kinetic energy,
turbulent dissipation rate and Reynolds shear stress profiles. Comparison
with experimental data has been made to assess the performance of both turbu-
lence models.

A. Attached Flow over an Axisymmetric Projectile

The transonic flow field about a projectile configuration with a turbu-
lent boundary layer has been computed. A1l the computed results shown are for
a = 0° Re = 13 x 10/m and M = 0.94 and 0.97. Numerical results are compared
with experimental measurements®7’38 which were performed for the same shape in
the NASA Langley Research Center 8 foot Transonic Pressure Tunnel.

The model geometry is shown in Figure 3. It is an artillery projectile
consisting of a secant-ogive nose, a cylindrical mid-section and a 7° conical
afterbody or boattail of half a caliber (one caliber = one diameter).

57. R. P. Reklis, J. E. Danberg, and G. R. Inger, "Boundary Layer Flowe on
Trangonic Projectiles," AIAA Paper 79-1551, 19789,

58. C. J. Nietubica, G. R. Inger, and J. E. Danberg, "A Theoretical and
Experimental Investigation of a Transonic Projectile Flow Field,” AIAA
Paper 82-0101, January 1982.
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Thus, it is equivalent to the central differencing and has an additional
smoothing term. A is a smoothing coefficient inserted into this numerical
dissipation term and can be varied between 0 and 1. A = 1 would correspond to
an overall first-order accuracy in £ A typical range of A used in the compu-
tations is .01 to .1. The smoothing term is treated explicitly.

F. Initial and Boundary Conditions

The k and € equations are marched in time until steady state results are
obtained and thus, solved as an initial-boundary value problem. Initial con-
ditions i.e., profiles of k and € are needed initially in the entire flow
field region. The initial conditions can be arbitrary but it may take longer
time to get the converged solution. Therefore more realistic profiles of k
and € need to be prescribed. This is based on the balance of each of the
terms in the equations.“! An example of the balance of the terms in the k
equation is reproduced here from Reference 41,

It is clear from Figure 2 that large gradients in the turbulence vari-
ables occur very near the wall and source terms are dominant. Convection
terms are negligible near the wall and the largest terms are the production
and dissipation terms. Based on this local equilibrium, we equate

production = dissipation

to obtain the initial k and € profiles. The turbulent viscosity, u, appears

in the production term and is obtained from the solution with an algebraic
eddy viscosity model. The above assumption works well for attached wall
bounded flows and is poor for separated or free shear flows.

Since calculations are extended up to the wall, it is easier to specify
the boundary conditions on the wall. At the wall, the dependent variables are
zero.

k =e¢=0 (70)

In the far field which lies outside the edge of the boundary layer, zero
derivatives of k and € are used. - 4
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where

and

As discussed in the previous chapter, fourth order dissipation terms are
usually added on the right hand side of Equation (62) to help control the
numerical instability. For the turbulence field variables convective terms
often dominate the diffusion in the far field (away from the wall) and can

cause convective instability. To overcome this difficulty, numerical
smoothing based on upwind schemes35’56 is used. The convection term -%% for
example is differenced as

By

(TE_)J - (Ej+1/2 = tj_]_/z)/AE (68)

where E is a numerical flux given by

e Bt Ea 1Y Ual \

j*1/2 7 2 9541 ~ 9

. } Ej B |Uj + Uj-ll

R e e A Y
and £ =qu,

Substituting these numerical fluxes, the right hand side of Equation (68) can
be simplified and Equation (68) can be written as,

55. S. Ogher and F. Soloman, "Upwind Schemes for Hyperbolic Systems of
Conservation Laws,"” Mathematies of Computation, Vol. 38, 1982, pp. 339-
377-

56. S. R. Chakravarthy and S. Osher, "Numerical Eaperiments with the Osher
Upwind Scheme for the Euler Equations, " AIAA Paper 82-0975, June 1982.
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The operators GE and 6C are central difference operators, e.q.

q

q. - .
_ 13+l -1
o=~z . (64)

Using central differencing for space, the second sequence of Equation (63b)
for example, becomes

At At _oan
[(' ?ZE Aj-l,])’ I’ CEKE Aj+1,])] AQJ’] = Aq (65)
841 1

for all j and a given 1 where j and 1 are the indices in the § and ¢ direc-
tions respectively. This is a 2x2 block tridiagonal matrix system which can
be rapidly solved using available solvers. Likewise the block tridiagonals
can be formed from the first sequence of Equation (63a).

The viscous terms are of the form acaacs and are differenced as2!

8,088 = [lay 141 *+ a5 118y 141 - B5 1)
(66)

G a; 1) By - Bj,]-l)]/z(AC)z.

Using Equation (66), the block tridiagonal system of Equation (63a) i.e., in
the ¢ direction can be written as

At

P aj,] +
2(az)

At
[ 722 85,001 - %j,1-185,1-1%

At

{(I + ——— (a, + 20, ; +a, )},
Z(AC)Z Ja]+1 J;] Js]-l ( 7)
6
895,141
At At ~
{ B - —( a, +a, ,)B. }] laq. = RHS (62)
2ac T, 141 2(8c)2 j.1+1 i, 173,141 N},l
495,141
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reduce it to two one-dimensional operators. With the source term retained,
one can include it in either spatial operators or in both or factor it out
altogether. In the present study, we have included it in the ¢ operator and
the factored scheme becomes,

[1 + at GEA"][(I - at D™ + At(GCBn - scc")] aq"
. (62)

n n n n
= - At(GEE + GCG - GCH ) + At S,

Expanding the factors gives Equation (61) back plus additional higher order
terms such as

2 n n n
At GEA GCB Aq

For steady state solutions Aqn goes to zero and thus, the approximate factor-
ization error vanishes. The factored form Equation (62) has reduced the two-
dimensional matrix inversion problem to two one-dimensional problems which can
be efficiently solved.

. E. Solution Algorithm

A convenient solution algorithm is developed for Equation (62) with the
following sequence.

! [(1 - atd") + At(GCBn - 5Cc")] 8q" = RHS (62) (63a)
| 1+ AtGEA“j aq" = aq" (63b)
)

™l - g+ A" (63c)

where RHS (62) is the right hand side of Equation (62). First, equation (63a)
is solved for Aan since the right hand side 1is known at the old time step.
AE" becomes the right hand side of Equation (63b) which is then solved for

' Aq". This is then added to q" to give q”+1 at the next time step as shown in
! Equation (63c).

Sy B
P WPV IDT Wy
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C =
3 (J
' 0 a3z )
E and
} 3 . 2 h
' (2c X p - re V2w (¢ Kp_
py2 e?
D =
e2 c -1 2w -yt
(ci1C P+ cp =) (- 2c, - R e )
. n .
where
Re” 2 2 2
a=—§_—-(°t+ w (g + o)+ ;z)
and
S22 2,2 2. 2 2
Pr=(gg v gy v edlugr v v W)+ (gup v gv, + 4w )2

Substituting Equation (59) into (58) and rearranging, one obtains

[(1 - 8t D") + at(sA" + 68" - 6.C™)] (q™! - qM
(61)

L n n_ n n
= At(GEE + 6CG GCH ) + At S

where [ is an identity matrix and 65 R 6& are the spatial difference - -a-
ntl n

tors. This is in the "delta" form since we are solving for Aqn = q -q.

D. Approximate Factorization

Direct inversion of the block matrix on the left hand side of Equation
(61) is a formidable task. To avoid this problem, approximate factorization
of the left hand side operator of Equation (61) is frequently used. In the
absence of the source term, one can approximately factor the left hand side to

A
e e
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The source terms S associated with the turbulence field variables can be very
large. As happens near the wall, the source terms (production, dissipation

and decay) become dominant over the convection and diffusion terms. This can
result in a very stiff algorithm if the source terms are treated entirely in
?n explicit manner.%* Thus, they are treated implicitly as shown in Equation
58).

Equation (58) 1is nonlinear since E, G, H and S are functions of the
dependent variable q. The nonlinearity can be removed by a linearization

procedure. A local Taylor expansion about q" yields.

e BT (D" @™ - o)+ oget?)
6™ =6 (5" (" - ") + 0(ar?)
(59)
HT < W e G (@™ - g™ ¢ ogar?)
s™1 - 5" e (BN (@™ - ") + o(at?),
_ oF _ 3G _9H _ 9dS
Let "a‘a s B-—a-d , C—-a—q‘ , D-"a‘a.
These Jacobian matrices are:
U 0
A =
0 U
W 0
B =
o} W
(60)

54. P. J. Roache, Computational Fluid Dynamics, Hermasa Publishers,
A lbuquerque, NM, 1976.
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The variables in Equation (54) are made dimensionless as follows:

——.p__ ——=u— _.=.—v-— —=L
p_pm 1) u aw L) v am ’ W aw
< =X v =Y 7 =2 ¥ -t
x—D i D ° z 7 t D7a—°;
(55)
u
- I - =t
[ TS ST
g
k Tk | g-2=
L a2 a3/D
[
i. For simplicity the 'bars' have been removed from the variables in Equation
(54). The turbulent viscosity in nondimensional form becomes
r.
S PK2
My = Cu - Re (56)
where
P,a.D
Re = —-—
u

C. Numerical Method

The numerical scheme used is the Beam-Warming?3 Euler implicit scheme.
The time differencing is

™1 - "+ at BH™ 4 o(at2) (57)
If Equation (54) is inserted in (57), one has
n+dl o n oE . 3G 3H n+l 2
qQ " =q - At (ag+a;'§E's) + 0(at?), (58)

40

PP ———

T T T ——




(3) compare the predicted mean flow and turbulence quantities with
experimental data, and

(4) compare the k-e turbulence model with an algebraic mixing length
turbulence model as applied to above problems.

B. Summary of Results

The thin layer form of the compressible Navier-Stokes eguations was
solved using a time dependent, implicit, approximately factored, finite dif-
ference scheme. The equations were marched in time until the desired steady
state results were achieved.

(1) For the computation of turbulent flows, the turbulence closure
was provided with Baldwin-Lomax algebraic and Chien's k-e two-equation eddy
viscosity models. The k and e equations were developed in the general spatial
coordinates and incorporated into a thin layer, time dependent Navier-Stokes
code. The same implicit algorithm that simultaneously solves the mean flow
equations was extended to solve the turbulence field equations using block
tridiagonal matrix inversions. Calculations with the k-¢ model have been
extended up to the wall and the exact values of the dependent variables at the
wall have been used as boundary conditions. Very small grid spacing was
utilized close to the wall in order to resolve the steep gradients of the
dependent variables observed in the viscous sublayer. The distance of the

first grid point from the wall should be within y+ < 1.25.

(2) The transonic flow field about an artillery projectile (secant-
ogive, cylinder, boattail) with a turbulent boundary layer has been computed.
The computed results were obtained for a = 0°, Re = 13 x 10%/m and M, = .94
and .97. These results were compared with the available experimental measure-
ments of the mean flow quantities.

Computed results show the turbulent kinetic energy, dissipation rate and
turbulent eddy viscosity profiles. The velocity profiles and the surface
pressure distribution have been obtained with both the algebraic and the k-e
turbulence models and are compared to experiment. The results are in good
agreement. The rapid expansions at the ogive and the boattail junctions are
well predicted by both models. A small improvement with the k-¢ model predic-
tion is found at M_ = .94,

(3) Numerical computations have also been made for a transonic tur-
bulent flow over an axisymmetric bump model which involves shock induced sepa-
ration. The computed results were obtained for M = .875, a = 0° and
Re = 13.6 x 10°/m, The computed results are compared with the experimental
measurements for both the mean flow and the turbulence quantities which are
available for this case.

The surface pressure distribution and the contour plots of Mach number
and pressure indicate the presence of a strong shock wave. The position of
the shock wave is well predicted by both the algebraic and the k-e turbulence
models and compares well with experiment. Results are presented showing the
development of the mean velocity, turbulent shear stress and turbulent kinetic -
enerqgy profiles over the aft portion and just downstream of the bump. The
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results are generally in good agreement with the experimental data. Predic-
tions by both turbulenze models are poor in the separated flow region. In the
redevelopment region downstream, however, k-e¢ model prediction is in better
agreement with the data. The k-¢ model successfully predicts the location and
the trend in the peaks of the turbulent shear stress and turbulent kinetic
energy profiles. The algebraic model predicts sharp increase and decrease in
the turbulent shear stress which is physically unrealistic.

(4) The algebraic model is based on local information and predicts
undesirable sharp increase and decrease in the turbulent shear stress. As
expected, the k-¢ model avoids this since length scales are obtained by solv-
ing a transport equation. Poor comparison between the predictions by both
models and the experiment was found in the recirculating region. Some
improvements were found in the developing regions downstream with the k-¢
model. Where the mean velocities are relatively in good agreement with the
c<perimental results, so are the turbulent shear stress and kinetic energies.

C. Recommendations

The major difference between the calculations and the experiment is in
the separated region. It is in this region that the turbulent shear stress
and kinetic energy are under predicted by the k-e model. At this stage it is
exceedingly difficult to sort out the discrepancies between computation and
experiment that arise separately from turbulence modeling and computational
procedures. This situation will continue until grid independent computations
can be achieved and numerical smoothing procedures are fully understood.

With this in mind one can only speculate for improving the model predic-
tions. A look at the balance of the terms in the k-equation suggests that the
balance of the production and the dissipation must occur farther away from the
wall in order to produce experimentally observed peaks in turbulent shear
stress and kinetic energy. This in turn implies tuning the e equation.
Further computational investigation is recommended in this regard. The
protuberance configuration is a good case for testing turbulence models. It
is recommended that computations be made for this configuration to further
validate the k-e model. Additionally, the wake flow or the base flow behind
the base of the projectile is one where k-¢ model application is more appro-
priate since it predicts gradual change in length scales. It is believed that
the body of information obtained in the present research forms a sound basis
for attacking such complex flow problems.
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